

Energy+Environmental Economics

Transportation Electrification: *Recent Developments and Implications for the Grid*

MADRI Meeting March 11, 2019

Nancy E. Ryan, Ph.D. Partner

About Energy and Environmental Economics, Inc. (E3)

- Founded in 1989, E3 is an industry leading consultancy in North America with a growing international presence
- + E3's 50+ consultants operate at the nexus of energy and environmental economics, regulation and public policy
- Our team employs a unique combination of economic analysis, modeling acumen, and deep institutional insight to solve complex problems and provide thought leadership for a diverse client base

+ Update on state of EV technology and key trends

+ Characteristics of EV charging loads and implications for the grid

+ Results from selected studies on distribution grid upgrade costs

+ What's next?

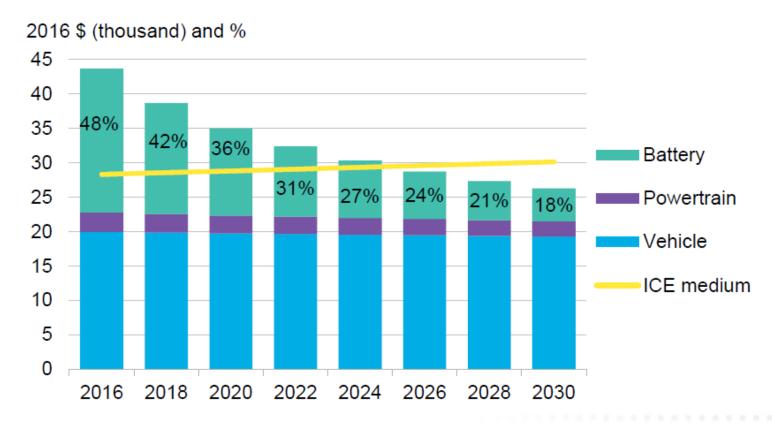
Automakers are committing to EVs on a global basis

EVERY VOLVO INTRODUCED FROM 2019 WILL HAVE AN Electric motor

Hybrids, EVs to fill the lineup

VW announces massive \$84 billion investment in electric cars and batteries

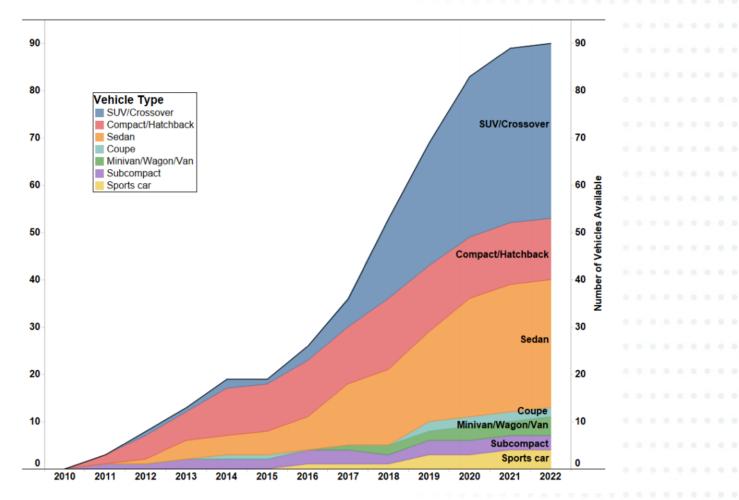
General Motors unveils plan to release 20 electric vehicles by 2023


Chinese electric car company Nio seeks to raise **\$1.8** billion in IPO

Nissan, Mitsubishi, Renault to launch 12 new electric cars by 2022

All new Jaguar Land Rover cars to have electric option from 2020

EVs is declining with battery costs


U.S. medium BEV pre-tax price breakdown, ICE pre-tax price and share of battery costs

Source: https://about.bnef.com/electric-vehicle-outlook/

Solution Vehicle buyers will soon have many ZEV options

EV Vehicle Models Available (2010-22)

Energy+Environmental Economics

6

Medium and Heavy Duty segments are transforming also

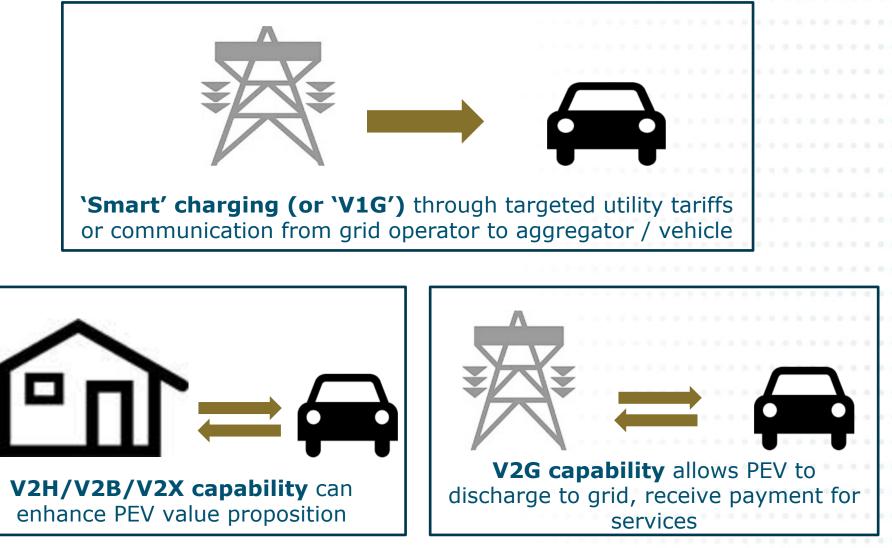
Here Today

Energy+Environmental Economics

Coming Tomorrow

Light-duty	truck Med	ium-duty tru	uck Heavy-	duty truck	City bus	
Timing of year achie	-	ctric vehicl	e total cost o	of ownership parit	y with diesel vehic	
		2017	2020	2025	203	0
Long haul (500km)	United States					
Regional						
haul (200km)	United States				-	
Urban						

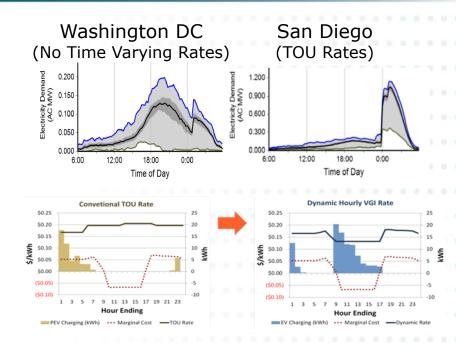
*Source: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/whats-sparking-electric-vehicle-adoption-in-the-truck-industry Energy+Environmental Economics


United

States

haul

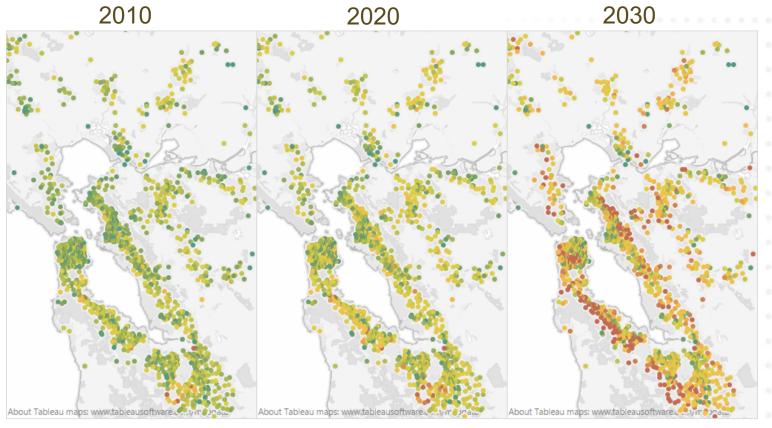
(100km)



Grid integration measures: Smart Charging (V1G)

+ Rate design:

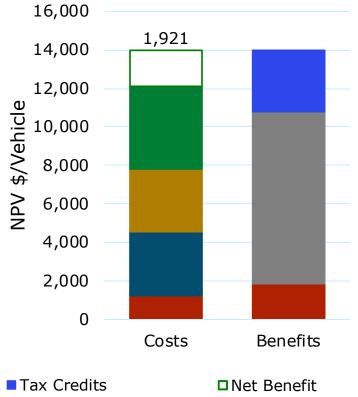
- Time of use (TOU) rates vary on a fixed schedule and are higher during periods of peak demand on the bulk power system.
- Dynamic rates vary from hour to hour with conditions on the bulk system or local grid (SDG&E's Charge Ready Pilot)


+ Demand response:

- The utility or a third party directly controls when and even where a vehicle charges: PG&E/BMW pilot
- Customer is paid for performance and can over-ride if desired.
- Aggregator may employ stationary battery backup to assure performance.

Distribution grid impacts of EV Adoption in the SF Bay Area

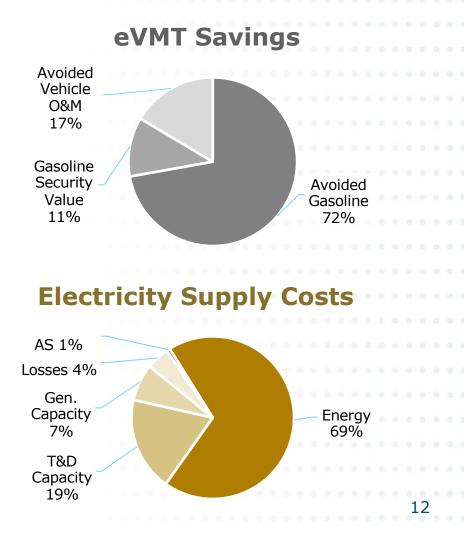
Feeder and substation utilization with "ZEV most likely" vehicle adoption and TOU rates

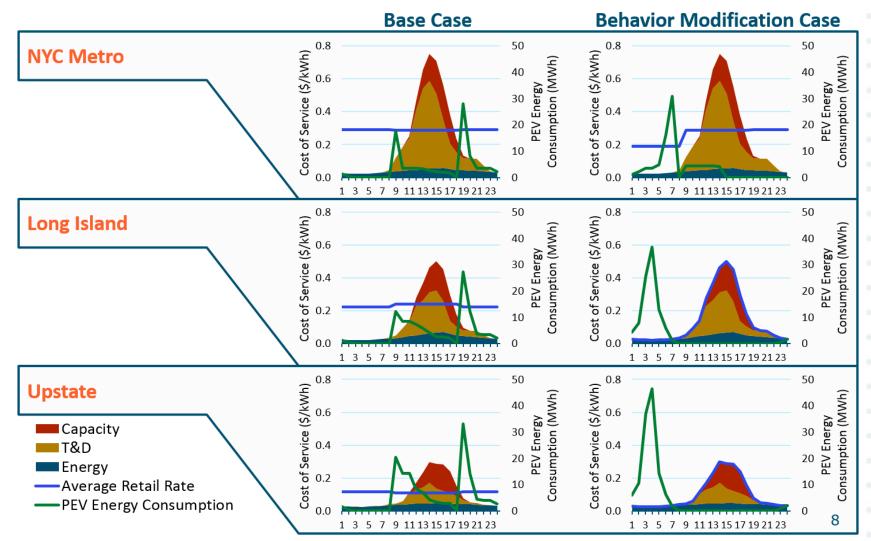

% Utilization

0.000 1.500

http://caletc.com/wp-content/uploads/2016/08/CalETC_TEA_Phase_2_Final_10-23-14.pdf

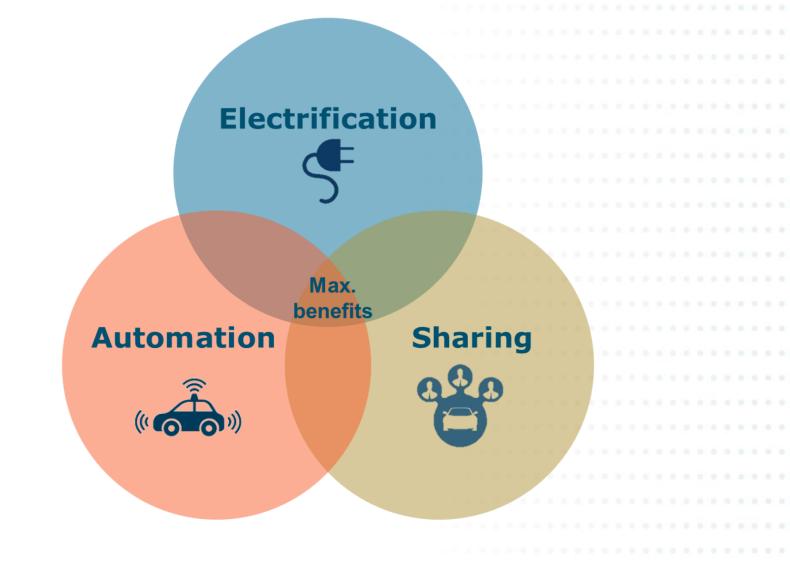
NYSERDA Cost Benefit Analysis of LDV Electrification in New York


Societal Benefits on Long Island, Base Case


- eVMT Savings
- Emissions

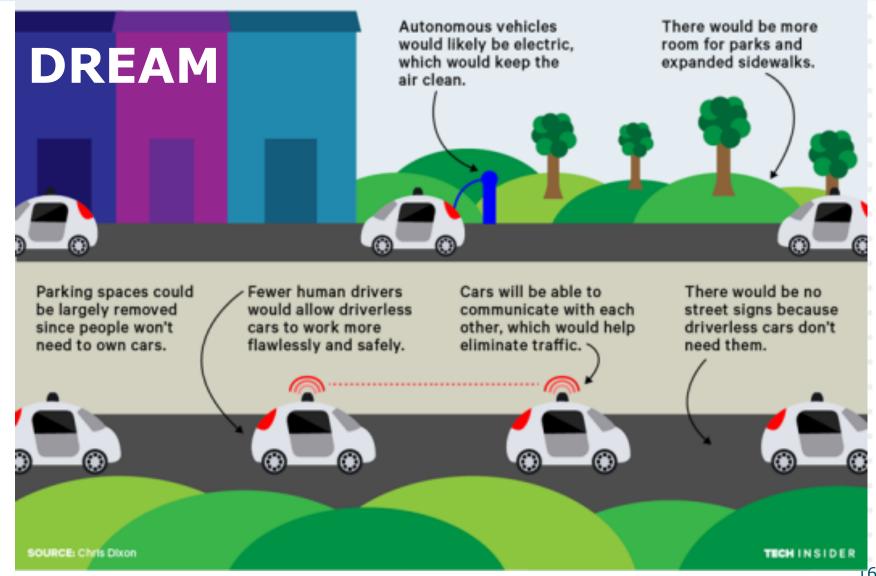
Energy+Environmental Economics

 Incr. Vehicle Cost
Electricity Supply
Charging Infrastructure



Avoided T&D costs drive savings from smart charging in New York study

Three transportation revolutions present new challenges



A load as big as a Walmart in the footprint of a 7-11

Three Revolutions: Dream Scenario

THANK	YUU								
Nancy E. Ryan,	Ph.D.								
Partner									
nancy.ryan@ethr	ee com								
415-391-51									
415-591-510	J0								
www.ethree.c	om								

Specs: Electric Delivery Vans (Class 5)

+ Charging: conductive, plug-in

- Level 2 (J1772) and DC fast charging capable
 - Level 2: overnight charge
 - DC fast charging: 80% charge in ~1 hour
- Battery packs: 60-100 kWh

+ Manufacturers: Workhorse, Chanje

Specs: Parcel Trucks (Class 6)

+ Charging: conductive, plug-in

- Level 2 (J1772) and DC fast charging capable
- Battery packs: 70-120 kWh

+ Manufacturers: Workhorse, Boulder Electric, Thor

+ Charging options:

- Conductive (plug-in): Level 2, DC fast charging, and pantographs
- Inductive (wireless): limited commercial availability; most expensive option and remains largely in pilot phase
- Battery packs: ~60 600 kWh (current best in class is 400 600 kWh depending on manufacturer)

+ Many manufacturers:

- Transit: BYD, Proterra, Solaris, VDL, Optare, Volvo, Van Hool, and many high-volume manufacturers supplying the Chinese market
 - Transit bus manufacturing volume is dominated by Chinese firms, but competition from US and European manufacturers is growing.
- **School**: Lion, Blue Bird, Green Power, Starcraft, Trans Tech

E-bus Charging Technologies

- + Slow charger: 15-22 kW, full charge in ~10h
 - 2:1 bus-to-charger ratio
- + Fast (22-50 kW) and Rapid (50-120 kW) chargers: full charge in 2-6h
 - 20:1 bus-to-charger ratio
- Most common for overnight or layover charging

Pantograph charging

 Direct electrical connection, without plug

- 20:1 bus-to-charger ratio
- + 150-300 kW power output
- Offered by many ebus providers (e.g., Proterra, Solaris, VDL, Volvo, Van Hool)

- Coils under road surface transfer energy to coils beneath bus floor
- + Power output up to 200 kW
- + Stationary systems (bus positioned over coils) commercially available today
 - 20:1 bus-to-charger ratio
- Dynamic systems (bus charged while in motion) remain in pilot / demo stage

+ Challenges

- Including charges, electric buses have upfront premium of ~\$300,000 over diesel buses (which typically cost \$450,000 750,000)
- Existing commercial and industrial rates may not currently be suitable for early state deployment of electric buses, which can significantly impact customer bills
- Bus loads can be 100 kW 500 kW, depending on charger type

+ Opportunities

- School buses provide a unique opportunity to create a daytime load
- Large batteries of ~200kWh are also potential sources of ancillary services