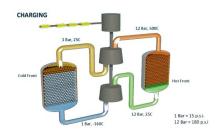
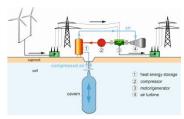


Storage Technologies



Over 100 Energy Storage Technologies



Flywheels

Thermal ES

CAES (Compressed Air ES)

Aqueous Sodium

Super Capacitors

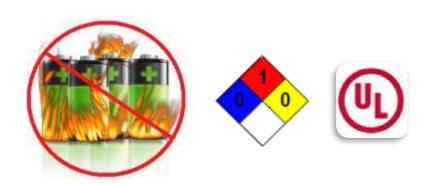
Liquid Metal

High Temperature Sodium

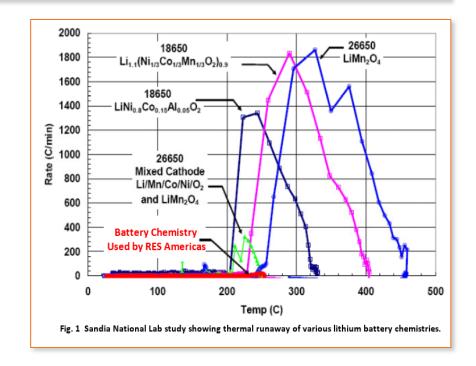
Zinc Air

Flow Batteries

Why Lithium Batteries



Chemical & Thermal Safety



Battery Safety

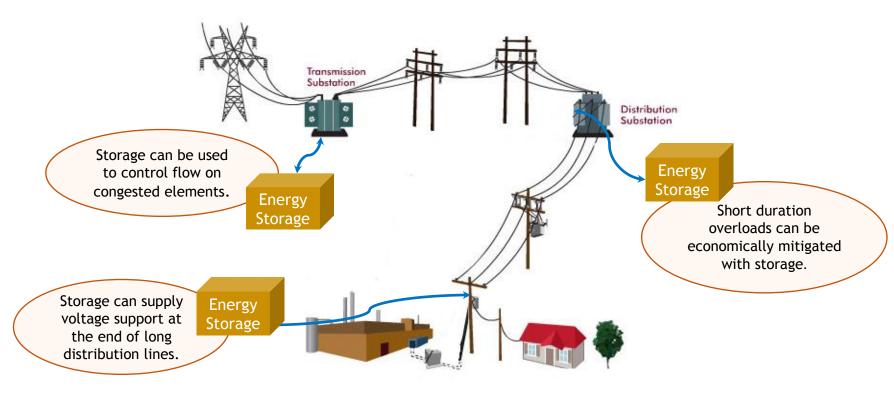
- Battery chemistry safety No internal thermal runaway
- No hazardous materials, low MSDS of 0-1-0
- UL-listed Cells
- Non-toxic electrolyte

"The reduced peak of self-heating rate of LiFePO4 based cells makes them the safest cell Li-ion batteries on the market today" -Sandia National Laboratories 2012

Storage Applications

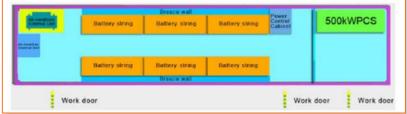
Ancillary Services

- Frequency Regulation
 - Driven by FERC Order 755
 - Two-part payment
 - Why PJM
- Order 784 for non-markets
 - Self-supply of balancing services
- Decrease in reserve requirements = net decrease in cost to load
- The right rules allow for <u>merchant</u> project development



Distribution & Transmission Upgrade Deferral

Values Reduce cost of infrastructure upgrades Modular ES may be moved as required Reduces visual, environmental, & community impacts



Microgrid & Outage Mitigation

- Glacier, WA. RES' first distribution deferral / microgrid project. COD July 2015.
- 500kW/1.1MWh Mobile Energy

Values

- Reduces outage cost to customers
- Increases grid resiliency, reduces risk of storm or terroristic actions

Benefits

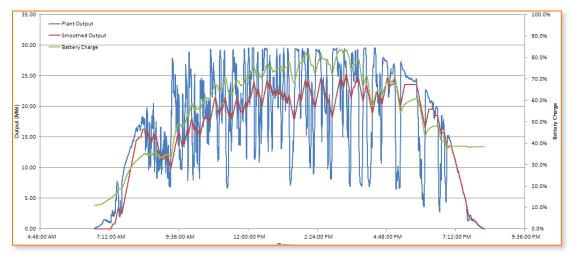
- Additional value on top of distribution deferral
- Storm mitigation
- Could support critical facilities

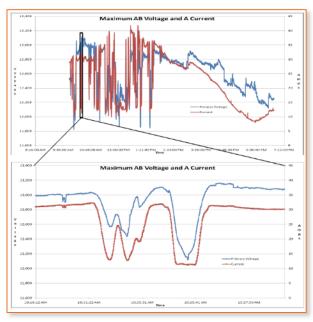
Storage as Wires

- Reliability: Peaking Requirements
 - Stranded Assets
- Regulated Cost Recovery for Transmission Applications
 - Western Grid
- Regulated Cost Recovery for Distribution Applications
 - Jurisdictional Considerations
 - Deregulated vs. Regulated Markets
- Multiple Value Streams

Storage as "Capacity"

- l'm not going there
- Is there a "peak" or "flexible" value for "capacity"?
 - What is the duration?
 - Reduction of out-of-market payments
- California RA
- PJM Capacity Performance
 - Maximizing the value and utilization of intermittent resources
 - CPP Compliance
- Multiple Value Streams



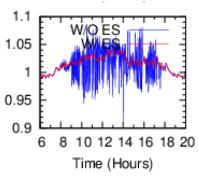


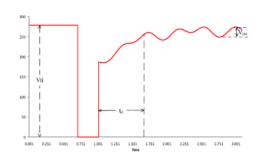
PV / Wind Ramp Control

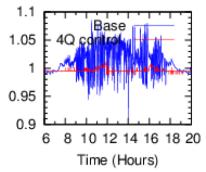
Webberville 30MW PV on a Partially Cloudy Day

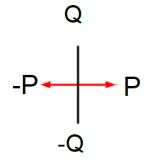
Rooftop PV causing Voltage Fluctuations on local Distribution, SDG&E Rate Case 2012

Values	Benefits
 Mitigation of PV DG variability on distribution (voltage fluctuations) Ramp control for large grid PV projects 	 Much faster than available carbon based balancing Improve power quality Eliminate upstream current flow




Power Quality




Full Active & Reactive Power Control

- Flicker mitigation
- Voltage transients, sags, swells
- Power factor correction
- Phase balancing
- Oscillation dampening

Values

- Reduce equipment heating, protective device malfunction, & catastrophic failure
- Increase efficiency a improved utilization of grid assets

Benefits

- Compliance with utility interconnection requirements
- Reduces need for distribution upgrades related to DG, Grid PV, faults, & blackouts

Additional Energy Storage Services

- Spinning reserve
- Wind integration fee mitigation
- Reducing resource adequacy requirements
- Volt/VAR power quality services
- Replace dynamic VAR in renewable energy plant
- Demand management
- Power factor control
- Phase balancing
- Mobile locations / seasonal load relief

Policies for Storage Development

Key Policies

- Storage should be treated as storage and not "forced" into a simple supply or load construct for modeling, interconnection, or billing
- A single energy storage facility should be eligible to provide more than one service
- All benefits of energy storage should be quantified: environmental, power quality, grid resiliency, flexibility, & the ability to better integrate renewables
- Storage should be [properly] modeled in utility IRPs/ERPs

Thank you

Renewable Energy Systems Americas Inc.

11101 W. 120th Avenue Broomfield, CO 80021 303-439-4200

www.res-americas.com

John Fernandes Policy & Market Development Manager

john.fernandes@res-americas.com

