

Energy Production and Distribution At Princeton University

Mid-Atlantic Demand Response Initiative, Fall 2015

Ted Borer, PE, CEM, LEEDAP

etborer@princeton.edu

John Webster, ICETEC

jwebster@icetec.com

- Campus Energy Demands
- Energy Plant Equipment
- Combined Heat and Power Production
- Historic & Projected Emissions
- Solar PV
- Plant Economic Dispatch
- Integration with PJM
- "Microgrid" benefits and issues
- Best Practices

Energy Demands at Princeton

Energy Equipment & Peak Demands

 Electricity (1) Gas Turbine Generator Solar Photovoltaic System 	<u>Rating</u> 15 MW 4.5 MW	Peak Demand 27 MW
Steam Generation		
 (1) Heat Recovery Boiler (2) Auxiliary Boilers @ 150 ea. 	180,000 #/hı 300,000 #/h	ır 240,000 #/hr
Chilled Water Production		
(3) Steam-Driven Chillers	10.100 Tons	5
 (5) Electric Chillers 	10,700 Tons	s 15,000 Tons
 (1) Thermal Storage Tank *peak discharge 	40,000 Ton 10,000 tons	-hours (peak)

Plant Energy Balance

Campus District Energy Systems

Centrifugal Electric Chiller

Chilled Water Thermal Storage

TES Tank Stratification

51.2	٥F		
50.9	٥F		
51.2	0F		
51.0	٥F		
50.9	٥F		
51.1	oF		
51.2	oF		
51.0	OF		
51.1	OF		
50.9	oF		
48.5	OF		
33.2	0F		
32.4	0F		
32.2	0F		
32.1	0F		
31 9	0F		
21 9	05		
21.9			
21.0	05		
01.7	×r oπ		
01.0	NE OE		
31.6	off.		
31.8	9F		
31.8	PF		
31.8	ΨF		
31.9	OF _		
31.7	٥F		

Princeton Chilled Water Use

Princeton Summer Steam Use

Combined Heat & Power, "Cogeneration"

The GE LM-1600 Gas Turbine

How Much More Efficient is Combined Heat & Power?

Gas Turbine Simple-Cycle Efficiency Oct 1, 2013 - Feb 14, 2014 100% 95% 90% 85% 80% 75% **Generator Simple Efficiency** 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% 3 9 10 11 12 13 14 15 16 17 0 2 5 6 7 8 1 4

Generator Power Output, MW

Cogeneration System Total Efficiency Oct 1, 2013 - Feb 14, 2014 100% 95% 90% 85% 80% 75% 70% 65% **Cogen Efficiency** 60% 44 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% 10 20 30 40 50 60 70 80 90 100110120130140150160170 0 HRSG Steam Flow, M#/Hour

Princeton Power Demand With Cogen Dispatch To Minimize Cost

Princeton Solar PV

- **5.3 MW DC**
- 27 Acres
- Lease equipment

- Own all power and Solar Renewable Energy Credits from day one
- Sell SRECs until system is paid for

Eventually stop selling SRECs and claim all avoided CO₂

Main Campus Power, Generated & Purchased During PV System Testing August 30, 2012

Purchased Power and Power Price During Solar PV Testing August 30, 2012

Princeton University Electrical Use Growth Campus + Energy Plant

Fiscal Year

Princeton Campus One-Line

Campus Power During Hurricane Sandy

Economic Dispatch and ICETEC SmartGrid System

Princeton Economic Dispatch

TES Economic Dispatch Screen

Icetec Overview

From Smart Meter to Smart Grid

Quality metering on all inputs and outputs in system Visualize and interact with the data in realtime

Centralized repository and front end Predicative analytics about load, weather, markets

Solve for optimal interaction with Macrogrid

Distributed Resource Fallacy

- *Average* retail rate = \$.09
- *Average* cost of self generation = \$.075
- Conclusion: Run local generation (*on average*) 24/7
- Best payback occurs with incentives to integrate DER flexibility into <u>Hourly Energy Markets</u>

Rolling Prior 12 Months (PSEG)				
Min Hourly LMP:	-\$228/MWh			
Frequency of Hours below \$10	220			
Frequency of Hours below \$20	>1,500			
Average LMP in lowest 2,000 hours	\$14.6 or \$.0146/kWH			

Princeton Participation in PJM

- Princeton currently provides **Energy**, Tier-2 **Sync Reserves** and dynamic **Frequency Regulation (FR)** with the central energy plant
- These are market commitments being evaluated and optimized in every hour based on market analytics, site loads, available assets

Princeton Participation in PJM

Raw Data – Two Hour Period

Balance between Automation and Oversight

Predictive processing Market bidding Frequency Regulation Dispatch / Guidance triggers Operating plant adaptation

Reliable & Economic Operations Equipment status and nuances Reliability issue assessment Campus need assessment Situational needs override modeling

Category	Grid/ Societal Benefits	Recognized by	Details
Grid Service	Energy	PJM pending EPSA appeal	Hourly Market
Grid Service	Capacity	PJM pending EPSA appeal	Annual Market
Grid Service	Fast Start Reserves	PJM	Hourly Market
Grid Service	Frequency Regulation	PJM	Hourly Market
Grid Benefit (High voltage or Low)	Reactive / Var Control, Frequency Response	Not currently recognized by distributed resources	Who best to recognize this service?
Grid Benefit	Fuel Switching/Dual fuel	Not directly recognized	Who best to recognize this service?
Societal/Grid	Resiliency, Source of Refuge	Not directly recognized with recent exceptions	How best to recognize this service?
Societal/Grid	CO2 Management, Thermal Efficiencies	Not directly recognized with recent exceptions	How best to recognize this service?

With Supreme Court Looming...

- Important Considerations for states:
 - Dispatch capable DR is a distinct product with distinguishable values from EE
 - Regardless of jurisdiction or payment issues, one benefit to Order 745 is it created a strong relationship between grid conditions and incentive to respond
 - State or local regulations aimed to affect ratepayer capacity charges must be incorporated into regional planning processes and drafted in a long standing manner

Best Practices / Closing Remarks

Must Do For Microgrid Reliability

- Distributed base-load generator(s)
- Ability to run isochronous
- Ability to isolate generator-load combinations
 - Skilled, manual, in-person effort, not automatic
- Underground utility distribution
- Black start capability
- Gross load-shed capability

Should Do For Microgrid Reliability

- Fully commission complete systems
- Re-test periodically
- Test using realistic conditions
- Building-level load-shed capability
- Multiple fuel options
- Use emergency response teams periodically
- Plan for human needs

Thank You

Appendix (or if we have time)

Macro vs Micro Efficiencies

PSEG "Generation Stack"

Large Utility Generating Plants Are Far Apart

Central Atlantic coal and nuclear plants are shown

Efficient Use Can Beat Efficiency of Scale

Campus Microgrid and Other Models

Simple Microgrid Concept

Microgrids Add Reliability

Microgrid Options

Utility Grid With Simple Redundancy

12 x 50 MW = 600 MW Demand 600 MW + 600 MW Back-Up = 1200 MW Installed Generation "N-1 Redundancy"

Utility Grid Vulnerability Points

12 x 50 MW = 600 MW Demand, 600 MW + MW Back-Up

Two Zero-Interruption Strategies

