

Role of Retail Regulation in Demand Response

by Robert L. Borlick

MIDATLANTIC DISTRIBUTED RESOURCES INITIATIVE WORKING GROUP MEETING

February 2, 2012

Borlick Associates LLC

Overview

- This presentation addresses the issue of jurisdictional authority over demand response – FERC vs. the States.
- The answer depends on the nature of the product provided by the demand response.
- Also discussed are the consequences of FERC Order 745 for retail demand response programs.
- In addition, the impact of an inevitable game-changer, the "energy-only" market is discussed.
- It concludes that over time the jurisdictional authority of State regulators over demand response is likely to increase.

Jurisdictional Authority

- All demand response is produced by end-use consumers, i.e., retail customers.
- Retail regulators have authority over demand response that are retail products, i.e., transactions between retail customers and their LSEs.
- Demand response becomes a wholesale product only if it is sold into a wholesale market by either the retail customer's LSE or by an ARC.
 - Retail customers cannot directly trade in wholesale markets.

3

 Large customers, like Alcoa, typically set up subsidiaries that are LSEs dedicated to serving one retail customer (the parent).

Jurisdictional Authority

- Retail regulators cede jurisdiction to FERC when demand response becomes a wholesale market product.
- However, retail regulators control which forms of demand response become wholesale market products, and under what conditions, because:
 - they regulate the demand response provider's LSE
 - they decide whether ARCs can participate in their jurisdictions and what rules the ARCs must follow.
- Thus, retail regulators have ultimate authority over demand response because they can prohibit (or reverse) its conversion into wholesale products at any time.

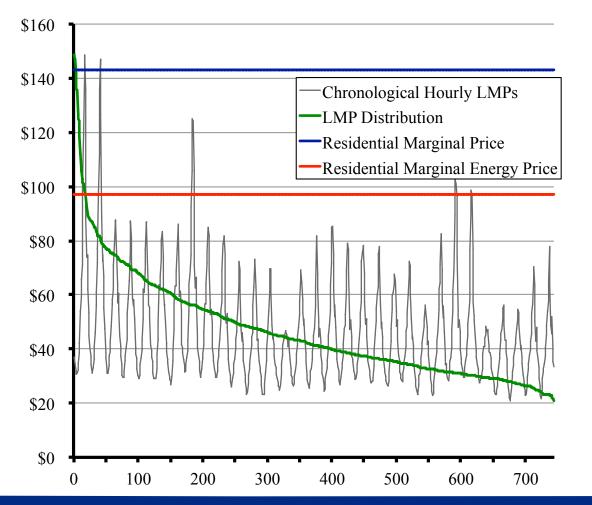
Types of Demand Response

Demand response (DR) is defined as a reduction in electric energy consumption in response to an energy price increase or to an incentive payment.

> DR can provide three different physical services:

- Economic DR (reducing load in response to the energy price)
- Reliability DR (interrupting load when supply is scarce)
- Ancillary Services DR (contingency reserve and regulation).
- The key difference between a wholesale or retail product is that the former must be centrally coordinated, whereas the latter does not.

- Economic demand response is inherently a retail product because it can be coordinated solely by energy market price signals.
- > This can occur either through:
 - retail tariffs that include real-time pricing
 - LSEs that selectively interrupt their customers' loads based on wholesale energy market prices.
- Economic demand response becomes a wholesale product when it is resold into the wholesale market by a retail customer's LSE or by an ARC.


- Retaining economic demand response as a retail product offers advantages over converting it to a wholesale product because:
 - it avoids the marketing and administrative costs that ARCs introduce
 - it avoids the need for "measurement and verification" protocols along with the associated costs, gaming potential and disputes over compliance
 - it allows symmetric application to both times of low energy prices (when consumption should be encouraged) as well as high energy prices (when consumption should be discouraged).

- FERC Order 745 introduced an obstacle to retail economic demand response programs by overcompensating demand response sold through ARCs.
 - ISOs must pay ARCs full LMP with no reduction for the savings to retail customers from avoiding payment under their tariffs.
- Retail customers will generally prefer selling demand response through an ARC, rather than to their LSEs.
 - The LSE can only pay its customer up to (LMP tariff price).
 - In contrast, a customer selling to an ARC will receive LMP F (where F is the ARC's fee) and will also avoid paying its LSE the marginal price in its retail tariff ("G").
 - Thus, the customer will sell to the ARC if G > F.

NUMERIC EXAMPLE

- For a large C&I customer taking power at a high voltage,
 G ≅ LMP, which will always exceed F (since F ≅ .2*LMP)
- For a small residential customer served by Pepco MD in August 2011, G ≅ \$140/MWh, whereas Pepco zonal LMPs ranged from \$21 to \$149/MWh.
- Thus, both large C&I customers and small residential customers will almost certainly prefer selling economic demand response to ARCs rather than to their own LSEs.
 - Selling to the LSE becomes attractive only if .2*F > G, i.e., if the zonal LMP exceeds *\$745/MWh*.

Pepco-MD Residential Marginal Tariff Price vs. LMPs

10

Borlick Associates LLC

- If ARCs were paid the efficient price of LMP G for economic demand response it is unlikely that they could compete with retail economic demand response programs employing dynamic rates.
 - LSEs would not the marketing and M&V costs that ARCs do, thus could pass these savings on to their customers.
- Nonetheless, ARCs would still play a role in providing capacity and ancillary services as these demand response products are not subsidized.

- Capacity markets require centralized coordination; therefore reliability demand response is a wholesale product.
- Retail customers that commit to reducing load during emergency events may sell those commitments to their LSEs or to the capacity market through ARCs.
- > ARC participation offers several advantages:
 - prevents LSEs from undercompensating their customers, thereby stimulating more demand response
 - Overcomes LSE disincentives to substituting demand response for "iron in the ground"
 - ARCs can diversify across LSE serve areas (portfolio effect).

- PJM is proposing to allow LSEs (or ARCs) to claim capacity credit for Price Response Demand (PRD) if:
 - the LSE subjects a subset of customers to dynamic energy prices
 - the LSE submits a reasonable estimate of the load reduction that will occur when the LSE's zonal LMP reaches \$1,000/MWh
 - the LSE agrees to achieve that load reduction through involuntary interruptions if customer price response is less than estimated.
- Because PRD is a product created by the LSE, its retail regulator must authorize and oversee its creation.
- However, once PRD is offered into a wholesale capacity market it becomes a wholesale product subject to FERC jurisdiction.

- Capacity markets are not necessary to achieve power system resource adequacy; energy-only markets successfully operate today (e.g., ERCOT and Alberta).
- Energy-only markets achieve resource adequacy by allowing energy prices to rise sufficiently above the marginal cost of a new peaking generator to allow the generator to fully recover its costs and earn a fair profit.
- > Transitioning to energy-only markets requires:
 - demand response to compete with supply for capacity credit
 - energy prices to be set by the demand side during times of supply scarcity (i.e., "scarcity pricing")
 - PRD to moderate price spikes (for customer/regulator acceptance).

- > The transition to energy-only markets is very likely.
 - The first prerequisite has largely been achieved for large customers
 - The second two are in the pipeline
 - The necessary PRD may already be achievable through dynamic rates without installing smart meters because most large C&I customers already have interval meters.
- Since energy-only markets substitute retail economic demand response for capacity resources they also supplant FERC jurisdiction.
- Energy-only markets empower retail customers to directly determine how much resource adequacy each wants, thereby obviating the need for centrally planned requirements.

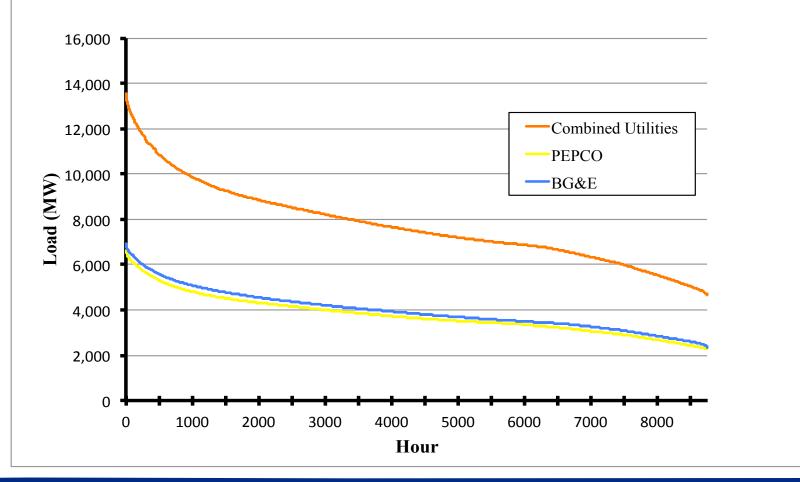
Ancillary Services Demand Response

- As mentioned earlier, demand response currently provides two types of ancillary services:
 - Regulation (i.e., compensating for minute-to-minute random variations in demand and supply)
 - Contingency Reserves (i.e., customer loads standing by to curtail within 10 minutes if a large generator or transmission line feeding energy to the system suddenly fails).
- Both of these services require central coordination, thus are wholesale market products.
 - While it might be possible for each LSE to self-provide these services, it would not be cost-efficient to do so.

Conclusions

- There is, and will remain a significant role for retail regulators in the development and oversight of demand response.
- This role will further increase in the future when energyonly markets emerge and (if) FERC Order 745 is overturned.
- Nonetheless, the coordination between retail regulators and the FERC will still be needed to maximize the value of demand response to retail customers.

CE.

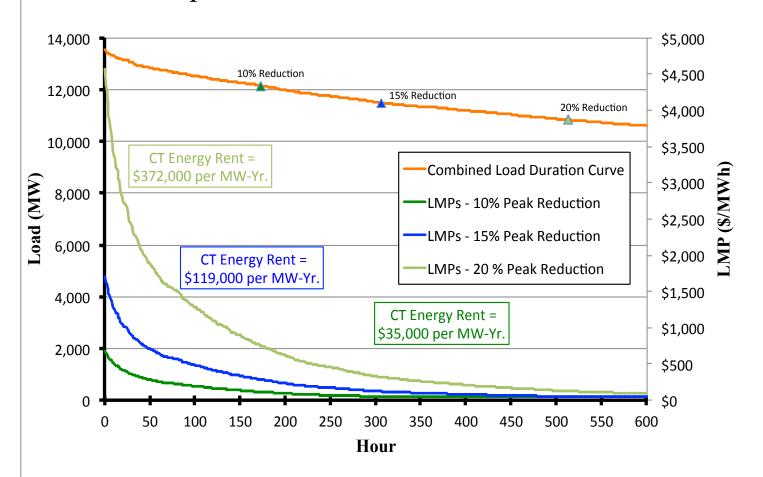

Contact Information

Borlick Associates LLC Providing Counsel in Energy Economics

Robert L. Borlick 6659 Hillandale Road Bethesda, MD 20815 1.202.256.2633 1.301.951.5890 *fax* rborlick@borlick.com

- Transitioning to energy-only markets requires demand response to be substituted for generating capacity until building new peaking generators is justified solely by the revenues earned from energy and ancillary services sales.
- When that condition is fulfilled capacity payments will no longer be needed.
- This condition will produce the optimal levels of generation and DR resources because both will be equally supported by the same energy and ancillary service prices.
- Let's examine how it might work in the SWMAAC region of PJM, predominately served by BG&E and Pepco.

2010 SWMAAC Load Duration Curves



21

Borlick Associates LLC

- Consider three levels of peak load reduction in SWMAAC: 10, 15 and 20 percent.
- For each level the LMP required to achieve the desired peak load reduction can be "discovered" through the following method:
 - calculate the LMP needed to shave the peak by a chosen reduction level based on Pepco and BG&E 2010 retail tariffs and assumed price elasticities of customer classes
 - determine the energy rents that a new natural gas-fired combustion turbine would have earned in 2010
 - repeat for the other two peak reduction levels.
- The next figure presents the results of these calculations.

LMPs Required for Three Levels of Peak Reduction

23

Borlick Associates LLC

- Relatively moderate LMPs would have achieved a 10 percent reduction in peak demand.
- But at these LMPs a new gas-fired combustion turbine would only earn energy rents of about \$35,000 per MW-Yr., which is clearly insufficient to incent new entry.
 - The Brattle Group has estimated that a new CT in SWMAAC requires about \$103,300 per MW-Yr. (real 2015 dollars).
- For a 15 percent reduction new gas-fired combustion turbines would earn energy rents of about \$119,000 per MW-Yr., which is just above Brattle's CONE estimate.
- A 20 percent reduction was unachievable because new generation would have entered the market to preclude that.