

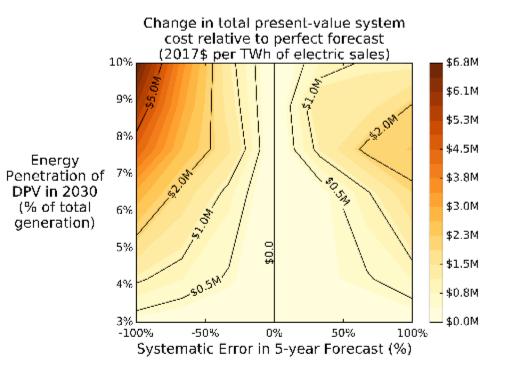
#### Forecasting DER Adoption: Electric Grid Planning

Ben Sigrin MADRI – Washington, D.C. November 27<sup>th</sup>, 2018

## The grid is decentralizing

H

#### **Energy Decentralization is Growing**


Several trends in energy decentralization:

- Distributed generation
- Rise of electric vehicles
- Price-responsive loads (e.g. demand response, smart home)
- Advanced sensors and controls

This has important electric grid planning implications:

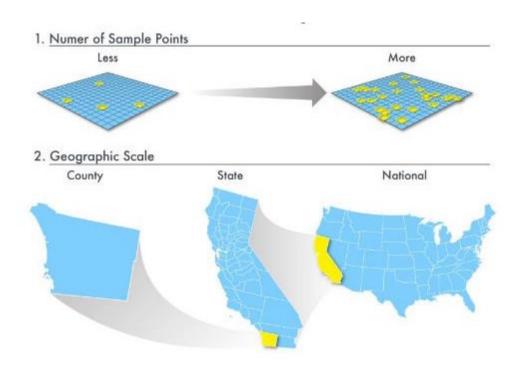
- Forecasting net load
- Advanced Rate Design
- Distribution & Transmission Grid Integration

#### The Cost of Misforecasting DERs is High



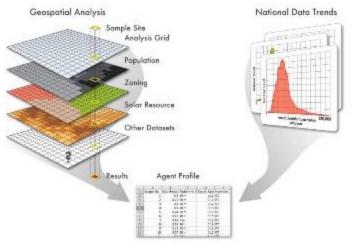
System planning costs (\$/TWh) due to systematic DPV misforecast for the Western Interconnection through 2030

A recent study demonstrated the cost of mis-forecasting DPV capacity is high, with an average net present cost of **\$2.3m/TWh** of utility sales

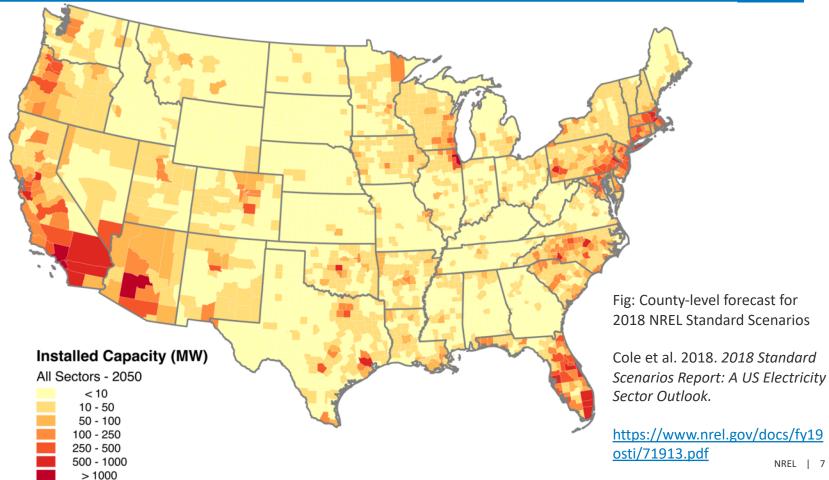

Misforecasting costs are created by either **overbuilding** generation and T&D resources, or **underbuilding** the system leading to lower resource adequacy.

**Source:** Estimating the Value of Improved Distributed Photovoltaic Adoption Forecasts for Utility Resource Planning, NREL, May 2018 (Gagnon et al. 2018)

# How do we better plan for DERs?

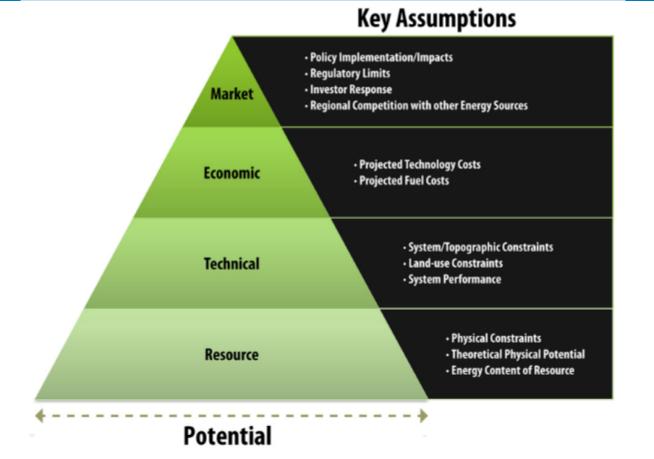



## dGen: NREL's Agent-Based Model to forecast DER Adoption

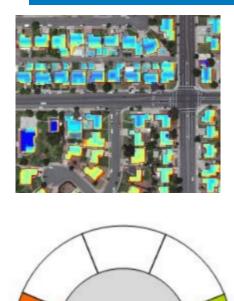



https://www.nrel.gov/analysis/dgen/






#### Forecasting DER adoption for grid planning



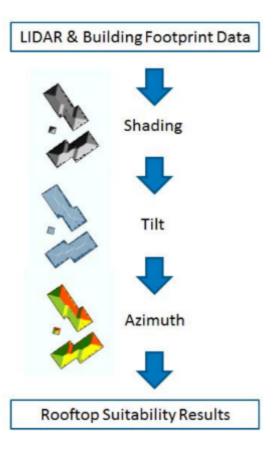

NREL | 7

#### Framework for Modeling DER Adoption



#### Assessing Rooftop Solar Technical Potential



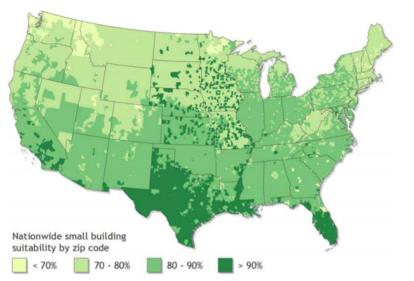

Flat

E

SE

W

SW




Clockwise: (1) Raw LiDAR imagery of buildings

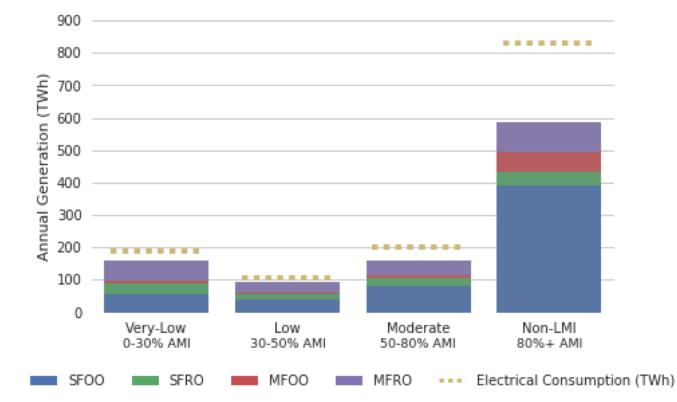
- (2) Developable area estimated for each building in dataset, then aggregated at regional level
- (3) Suitability based on roof plane orientations, tilt, size, and shading

#### Rooftop solar technical opportunity is large

Approximately 1.1 TW of technical potential, mostly in small buildings (i.e. residential homes)



| Building Class<br>(Building Footprint) | Total Suitable<br>Area (Billions<br>of m <sup>2</sup> ) | Installed<br>Capacity<br>Potential (GW) | Annual<br>Generation<br>Potential<br>(TWh/year) |
|----------------------------------------|---------------------------------------------------------|-----------------------------------------|-------------------------------------------------|
| Small (< 5,000 ft <sup>2</sup> )       | 4.92                                                    | 731                                     | 926                                             |
| Medium (5,000-25,000 ft <sup>2</sup> ) | 1.22                                                    | 154                                     | 201                                             |
| Large (> 25,000 ft <sup>2</sup> )      | 1.99                                                    | 232                                     | 305                                             |
| All Buildings                          | 8.13                                                    | 1,118                                   | 1,432                                           |


- The average small building had 52 m<sup>2</sup> (8.3 kW) of developable area, and 79% were "suitable"
- The average medium building had 952 m<sup>2</sup> (152 kW), and 52% were suitable
- The average large building had 4,178 m<sup>2</sup> (668 kW), and 52% were suitable

Gagnon, P. et al. (2016). Rooftop Solar Photovoltaic Technical Potential in the United States. A Detailed Assessment NREL/TP--6A20-65298. NREL | 10

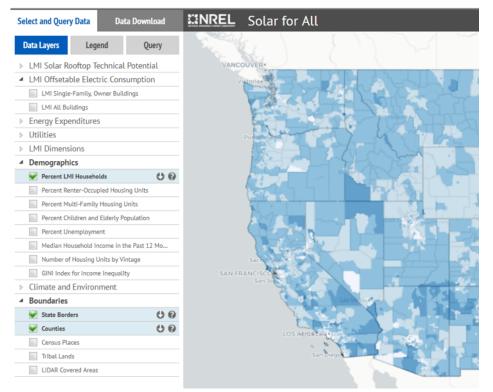
#### Rooftop solar can meet most residential demand

In the residential sector rooftop solar can technically meet most electrical demand, especially low-income.

But, multi-family (MF) and renter-occupied (RO) buildings are a large source of the potential and are typically ineligible for solar adoption.



Sigrin, B., & Mooney, M. (2018). *Rooftop Solar Technical Potential for LMI Households in the U.S.* https://www.nrel.gov/docs/fy18osti/70901.pdf


## All data used in the study is publicly available

**Download the REPLICA dataset!**– Tract-level solar technical potential by income, tenure, and building type, joined with 10 additional datasets to provide socio-demographic and market context (e.g. energy expenditures, demographics, etc.).

https://data.nrel.gov/submissions/81

**SolarForAll web application** - Explore, download, and intersect data in interactive web application

https://maps.nrel.gov/solar-for-all/



#### What predicts adoption decisions?

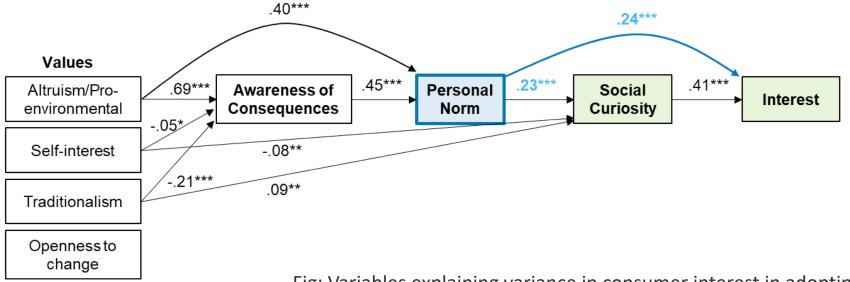
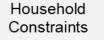
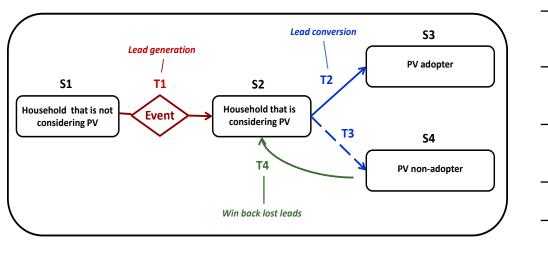




Fig: Variables explaining variance in consumer interest in adopting solar for Value-Belief-Norm construct




(Significant paths not shown)

Wolske, K. S., Stern, P. C., & Dietz, T. (2017). Explaining interest in adopting residential solar photovoltaic systems in the United States: Toward an integration of behavioral theories. *Energy*<sub>13</sub> *research & social science*, *25*, 134-151.

#### What do we know about DER adoption?

- Most consumers are primarily motivated by savings on utility bills (Sigrin et al. 2014; Moezzi et al. 2016)
  - Modeling prices and policies is important
- Consumers are influenced by spatial and social "peer effects" (Bollinger & Gillingham 2012; Wolske et al. 2017)
  - Motivates spatially-granular modeling
- Many of the variables that predict adoption decisions are non-demographic, e.g. pro-environmental norms, innovativeness, social support (Wolske et al. 2017)

#### Survey data is publicly available



|              | Survey Responses |         |     |         |       |  |
|--------------|------------------|---------|-----|---------|-------|--|
| Survey       | AZ               | CA      | NJ  | NY      | Total |  |
| General      |                  |         |     |         |       |  |
| Population   | 351              | 338     | 315 | 337     | 1341  |  |
| Survey       |                  |         |     |         |       |  |
| Considerers  |                  |         |     |         |       |  |
| Survey (non- | 113              | 187     | 109 | 182     | 589   |  |
| adopters)    |                  |         |     |         |       |  |
| Adopter      | 109              | 1181 18 | 105 | 185 187 | 1587  |  |
| Survey       |                  |         | 165 |         | 1387  |  |
|              | 573              | 1706    | 607 | 706     | 3592  |  |
|              |                  |         |     |         |       |  |

Download the survey data: <u>https://data.nrel.gov/submissions/68</u> Learn more about the study: <u>https://www.nrel.gov/solar/seeds/</u>

Sigrin et al. (2017): Understanding the Evolution of Customer Motivations and Adoption Barriers in Residential Solar Markets: Survey Data. National Renewable Energy Laboratory. https://dx.doi.org/10.7799/1362095

#### **Open Sourcing dGen Model**

The RiDER project seeks to advance the state-of-art of long term resource planning by open sourcing **NREL's dGen model**, an agent-based model of DER customer adoption.

- Model release scheduled for September 2020
- Develop county-level projections of distributed solar and storage deployment for each of the ISO/RTO participants' service territories

Want to learn more?

Contact: <a href="mailto:Benjamin.Sigrin@NREL.gov">Benjamin.Sigrin@NREL.gov</a>

# Substantial research gaps remain



#### Ongoing research needed

- Developing granular data sets (i.e. premise-level) and computational methods to simulate adoption and effects on the distribution system
- Anticipating how consumers will use DER technologies and their combinatorial possibilities, e.g. DPV + EV + DR
- Integrative modeling to including DERs in load forecasting and resource and infrastructure planning
- Understanding the value of DERs and how this changes with grid evolution
- Continuing to develop and refine methods to conduct Integrated Distribution Planning